Linear stability of flow in a differentially heated cavity via large-scale eigenvalue calculations

نویسندگان

  • Elizabeth A. Burroughs
  • Richard B. Lehoucq
  • Louis A. Romero
  • Andrew G. Salinger
چکیده

We locate the onset of oscillatory instability in the flow in a differentially heated cavity of aspect ratio 2 by computing a steady state and analyzing the stability of the system via eigenvalue approximation. We discuss the choosing of parameters for the Cayley transformation so that the calculation of selected eigenvalues of the transformed system will most reliably answer the question of stability. We also present an argument that due to the symmetry of the problem, the first two unstable modes will have eigenvalues that are nearly identical, and our numerical experiments confirm this. We also locate a codimension 2 bifurcation signifying where there is a switch in the mode of initial instability. The results were obtained using a parallel finite element CFD code (MPSalsa) along with an Arnoldi-based eigensolver (ARPACK), a preconditioned Krylov method code for the necessary linear solves (Aztec), and a stability analysis library (LOCA).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Electro-thermo-convection in a Differentially Heated Cavity Filled with a Dielectric Liquid Subjected to Partial Unipolar Injection

The Coulomb force applied by an electric field on any charge present in a dielectric liquid may cause fluid motion. At high applied electric fields in an insulating liquid, electric charge carriers are created at metallic/liquid interfaces, a process referred to as ion injection, and result from electrochemical reactions. In this article we deals with the problem of electro thermal convection i...

متن کامل

Computational Bifurcation and Stability Studies of the 8:1 Thermal Cavity Problem

Stability analysis algorithms coupled with a robust Newton-Krylov steady state iterative solver are used to understand the behavior of the 2D model problem of thermal convection in a 8:1 differentially heated cavity. Parameter continuation methods along with bifurcation and linear stability analysis are used to study transition from steady to transient flow as a function of Rayleigh number. To ...

متن کامل

Understanding the 8 : 1 cavity problem via scalable stability analysis algorithms

Stability analysis algorithms coupled with a robust steady state solver are used to understand the behavior of the 2D model problem of thermal convection in a 8 : 1 differentially heated cavity. The system is discretized using a Galerkin=Least Squares Finite Element formulation, and solved to steady state on parallel computers using a fully coupled Newton method and iterative linear solvers. An...

متن کامل

Buoyancy driven heat transfer of a nanofluid in a differentially heated square cavity under effect of an adiabatic square baffle

Buoyancy driven heat transfer of Cu-water nanofluid in a differentially heated square cavity with an inner adiabatic square baffle at different positions is studied numerically. The left and right walls of the cavity are at temperatures of Th and Tc, respectively that Th > Tc, while the horizontal walls are insulated. The governing equations are discretized using the finite volume method while ...

متن کامل

Stability analysis of stratified two-phase liquid-gas flow in a horizontal pipe

This study aimed at linear stability analysis of the stratified two-phase liquid-gas flow in a horizontal pipe. First, equations governing the linear stability of flow in each phase and boundary conditions were obtained. The governing equations were eigenvalue Orr Sommerfeld equations which are difficult and stiff problems to solve. After obtaining the velocity profiles of the gas and liquid ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002